Tonic and Phasic Respiratory Drives to Human Genioglossus Motoneurons During Breathing

Author:

Saboisky Julian P.,Butler Jane E.,Fogel Robert B.,Taylor Janet L.,Trinder John A.,White David P.,Gandevia Simon C.

Abstract

A tongue muscle, the genioglossus (GG), is important in maintaining pharyngeal airway patency. Previous recordings of multiunit electromyogram (EMG) suggest it is activated during inspiration in humans with some tonic activity in expiration. We recorded from populations of single motor units in GG in seven subjects during quiet breathing when awake. Ultrasonography assisted electrode placement. The activity of single units was separated into six classes based on a step-wise analysis of the discharge pattern. Phasic and tonic activities were analyzed statistically with the coefficient of determination ( r2) between discharge frequency and lung volume. Of the 110 motor units, 29% discharged tonically without phasic respiratory modulation (firing rate ∼19 Hz). Further, 16% of units increased their discharge during expiration (expiratory phasic and expiratory tonic units). Only half the units increased their discharge during inspiration (inspiratory phasic and inspiratory tonic units). Units firing tonically with an inspiratory increase had significantly higher discharge rates than those units that only fired phasically (peak rates 25 vs. 16 Hz, respectively). Simultaneous recordings of two or three motor units showed neighboring units with differing respiratory and tonic drives. Our results provide a classification and the first quantitative measures of human GG motor-unit behavior and suggest this activity results from a complex interaction of inspiratory, expiratory, and tonic drives at the hypoglossal motor nucleus. The presence of different drives to GG implies that complex premotor networks can differentially engage human hypoglossal motoneurons during respiration. This is unlike the ordered recruitment of motor units in limb and axial muscles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3