Differentially expressed genes and gene networks involved in pig ovarian follicular atresia

Author:

Terenina Elena1,Fabre Stephane1,Bonnet Agnès1,Monniaux Danielle2,Robert-Granié Christèle1,SanCristobal Magali1,Sarry Julien1,Vignoles Florence1,Gondret Florence34,Monget Philippe2,Tosser-Klopp Gwenola1ORCID

Affiliation:

1. GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France;

2. INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France;

3. INRA, UMR1348 Pegase, Saint‐Gilles, France; and

4. AgroCampus-Ouest, UMR1348 Pegase, Saint‐Gilles, France

Abstract

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes ( DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins ( IL5, IL24), TNF-associated receptor ( TNFR1), and cytochrome-c oxidase ( COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.

Funder

Agence Nationale de la Recherche (L' Agence Nationale de la Recherche)

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3