Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow

Author:

Brooks Alan R.1,Lelkes Peter I.2,Rubanyi Gabor M.1

Affiliation:

1. Gene Therapy Research Department, Berlex Biosciences, Richmond, California 94804

2. Drexel University, Philadelphia, Pennsylvania 19104

Abstract

Subtraction cloning and cDNA arrays were used to compare steady-state mRNA levels in cultured human aortic endothelial cells (HAEC) exposed for up to 24 h to either high-shear (13 dyn/cm2) steady laminar flow (LF), an established representation of “atheroprotective” flow conditions, or low-shear (<1 dyn/cm2), pulsatile, nonsteady, non-unidirectional flow (disturbed flow, DF) that simulates conditions in the atherosclerosis-prone areas of the arterial circulation. More than 100 genes not previously known to be flow regulated were identified. Analysis of selected genes by quantitative RT-PCR confirmed the results obtained from the microarrays. These data demonstrate that DF is not simply the absence of LF but in fact represents a distinct biomechanical stimulus that has a profound impact upon the gene expression profile of HAEC in culture. In line with previous studies, many of the changes in mRNA levels induced by LF are atheroprotective. In contrast, DF upregulated the mRNA levels of a plethora of proatherosclerotic genes including proinflammatory, proapoptotic, and procoagulant molecules. For some of the genes whose expression was altered by DF and LF, corresponding changes in EC function (proliferation and monocyte adhesion) could be demonstrated. Specifically, the sustained upregulation of VCAM-1 and increased monocyte adhesion to EC exposed to DF was similar to that found in EC in vivo at atherosclerosis-prone regions, confirming the relevance of our model system for in vivo conditions. Distinct differences in the cellular response induced by TNFα and DF suggest that the effects of DF are not mediated entirely by the same signaling pathways that activate NF-κB. These studies demonstrate extensive and pathophysiologically relevant changes in sustained gene expression patterns in aortic EC exposed to DF compared with LF which are predicted to induce a proatherogenic EC phenotype.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional regeneration at the blood-biomaterial interface;Advanced Drug Delivery Reviews;2023-10

2. Low Shear in Short-Term Impacts Endothelial Cell Traction and Alignment in Long-Term;2023-09-22

3. PHACTR1 and Atherosclerosis: It’s Complicated;Arteriosclerosis, Thrombosis, and Vascular Biology;2023-08

4. Proteostasis and resilience in the mechanically-stressed vascular endothelium;Current Opinion in Physiology;2023-08

5. Integration of immune cells in organs-on-chips: a tutorial;Frontiers in Bioengineering and Biotechnology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3