Primate globus pallidus and subthalamic nucleus: functional organization

Author:

DeLong M. R.,Crutcher M. D.,Georgopoulos A. P.

Abstract

Neuronal relations to active movements of individual body parts and neuronal responses to somatosensory stimulation were studied in the external (GPe) and internal (GPi) segments of the globus pallidus (GP) and the subthalamic nucleus (STN) of awake monkeys. In GPe (n = 249), GPi (n = 151), and STN (n = 153), 47, 29, and 28% of the cells, respectively, discharged in relation to active arm movements, 10, 11, and 15% to leg movements, and 22, 22, and 18% to orofacial movements. Of the neurons whose activity was related to arm movements, 26, 16, and 21% in GPe, GPi, and STN, respectively, discharged in relation to movements of distal parts of the limb. Of cells whose discharge was related to active limb movements, 37, 22, and 20% in GPe, GPi, and STN, respectively, also responded to passive joint rotation, which was usually specific in terms of joint and direction of movement. Only a small percentage of cells responded to muscle or joint palpation, tendon taps, or cutaneous stimulation. Short-latency, direction-specific neuronal responses to load perturbations confirmed the existence of proprioceptive driving. In both GPe and GPi, leg movement-related neurons were centrally located in the rostrocaudal and dorsoventral dimensions. In contrast, arm movement-related cells were found throughout the entire rostrocaudal extent of both segments, although in greater numbers caudally. In the central portions they were situated largely inferior and lateral to leg movement-related neurons. Neurons related to orofacial movements were largely confined to the caudal halves of both segments, where they were located largely ventral to arm movement-related cells. The STN cells whose activity was related to leg movements were observed largely in the central portions of the nucleus in the rostrocaudal and mediolateral dimensions. Cells whose activity was related to arm movements were found throughout the rostrocaudal extent of the nucleus, but were most numerous at the rostral and caudal poles. Neurons related to movements of the facial musculature and to licking and chewing movements were distributed over the entire rostrocaudal extent of the nucleus, where they generally occupied the ventrolateral regions. In all three nuclei, neurons with similar functional properties were sometimes clustered together. Within the arm and leg areas, however, there was no clear evidence for a simple organization of clusters related to different parts of the limb. These studies provide further evidence for a role of the basal ganglia in the control of limb movements.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 478 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3