Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones

Author:

Alexander G. E.,DeLong M. R.

Abstract

Microstimulation was carried out at over 1,250 sites in the putamen in four unanesthetized rhesus monkeys. At numerous sites, microstimulation resulted in movements of individual body parts including leg, arm, and face. Microstimulation-evoked limb movements were invariably contralateral to the stimulating electrode. In nearly all instances, the response at threshold was restricted to or maximal about a single joint. A small percentage of stimulation-evoked axial and orofacial movements were bilateral. The same motor response was frequently evoked over distances of up to 1,200 micron along a single penetration, suggesting that a relatively homogeneous motor-response zone underlies the observed micro-stimulation effects. We have designated these presumptive functional units striatal microexcitable zones (SMZ). The boundaries of adjacent SMZ involved in different movements frequently appeared to overlap. Amplitude, velocity, and acceleration of microstimulation-evoked elbow movements were assessed quantitatively. With increasing stimulus current, each of these parameters increased monotonically until saturation occurred. The spread of intrastriatal microstimulation currents was found to be comparable to that reported for motor cortex. The effective radius of 40-microA putamen microstimulation currents was estimated to be approximately 150 micron. This effectively rules out the possibility of current spread to the internal capsule. Microstimulation effects were abolished by fiber-sparing lesions produced by microinjections of the neurotoxin ibotenic acid. Moreover, chronaxie measurements in putamen (327 +/- 47 microseconds) were significantly higher than for capsular stimulation (150 +/- 32 microseconds). These observations are consistent with the proposal that movements evoked by putamen microstimulation resulted from activation of putamen output neurons. On the other hand, a possible contribution from the antidromic activation of corticostriate afferent terminals or axons cannot be excluded.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3