Fingertip Moisture Is Optimally Modulated During Object Manipulation

Author:

André T.12,Lefèvre P.32,Thonnard J-L.1

Affiliation:

1. Rehabilitation and Physical Medicine Unit and

2. Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve, Belgium

3. Laboratory of Neurophysiology, Université catholique de Louvain, Brussels; and

Abstract

Coordination between the normal force exerted by fingers on a held object and the tangential constraints at the fingertips helps to successfully manipulate objects. It is well established that the minimal grip force required to prevent an object from slipping strongly depends on the frictional properties at the finger–object interface. Moreover, interindividual variation in the modulation of grip force suggests that the moisture level of the skin could influence grip force strategy. In the present study we asked subjects to perform a horizontal point-to-point task holding an object with a precision grip. The object was equipped with a moisture sensor. We found large inter- and intraindividual moisture level variations. There was a strong correlation between grip force exerted and moisture level at the fingertips. Indeed, the grip force was minimal when the fingertip moisture was optimal with respect to friction. Furthermore, fingertip moisture tended toward this optimal level at which grip force is minimal. In conclusion, we showed a modulation of the grip force with moisture level and hypothesized novel mechanisms of moisture regulation that tend to stabilize the moisture level toward the value that minimizes grip force.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3