Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve

Author:

Winnard Kenneth P.,Dmitrieva Natalia,Berkley Karen J.

Abstract

Central nervous system neurons process information converging from the uterus, colon, and bladder, partly via the hypogastric nerve. This processing is influenced by the estrous cycle, suggesting the existence of an estrous-modifiable central nervous system substrate by which input from one pelvic organ can influence functioning of other pelvic organs. Here, we tested predictions from this hypothesis that acute inflammation of colon, uterine horn, or bladder would produce signs of inflammation in the other uninflamed organs (increase vascular permeability) and that cross-organ effects would vary with estrous and be eliminated by hypogastric neurectomy (HYPX). Under urethane anesthesia, the colon, uterine horn, or bladder of rats in proestrus or metestrus, with or without prior HYPX, was treated with mustard oil or saline. Two hours later, Evans Blue dye extravasation was measured to assess vascular permeability. Extravasation was increased in all inflamed organs, regardless of estrous stage. For rats in proestrus, but not metestrus, either colon or uterine horn inflammation significantly increased extravasation in the uninflamed bladder. Much smaller cross-organ effects were seen in colon and uterine horn. HYPX reduced extravasation in the inflamed colon and inflamed uterine horn, but not the inflamed bladder. HYPX eliminated the colon-to-bladder and uterine horn-to-bladder effects. These results demonstrate that inflaming one pelvic organ can produce estrous-modifiable signs of inflammation in other pelvic organs, particularly bladder, and suggest that the cross-organ effects involve the hypogastric nerve and are at least partly centrally mediated. Such effects could contribute to cooccurrence and cyclicity of distressing pelvic disorders in women.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antinociceptive Effects of an Anti-CGRP Antibody in Rat Models of Colon-Bladder Cross-Organ Sensitization;Journal of Pharmacology and Experimental Therapeutics;2023-05-10

2. Bladder Pain Sensitivity Is a Potential Risk Factor for Irritable Bowel Syndrome;Digestive Diseases and Sciences;2023-03-07

3. Spinal Cord;Handbook of Neurourology;2023

4. Spinal Cord;Handbook of Neurourology;2023

5. Spinal Cord;Handbook of Neurourology;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3