Gonadal hormone effects on entrained and free-running circadian activity rhythms in the developing diurnal rodent Octodon degus

Author:

Hummer Daniel L.,Jechura Tammy J.,Mahoney Megan M.,Lee Theresa M.

Abstract

The slowly maturing, long-lived rodent Octodon degus (degu) provides a unique opportunity to examine the development of the circadian system during adolescence. These studies characterize entrained and free-running activity rhythms in gonadally intact and prepubertally gonadectomized male and female degus across the first year of life to clarify the impact of sex and gonadal hormones on the circadian system during adolescence. Gonadally intact degus exhibited a delay in the phase angle of activity onset (Ψon) during puberty, which reversed as animals became reproductively competent. Gonadectomy before puberty prevented this phase delay. However, the effect of gonadal hormones during puberty on Ψon does not result from changes in the period of the underlying circadian pacemaker. A sex difference in Ψon and free-running period (τ) emerged several months after puberty; these developmental changes are not likely to be related, since the sex difference in Ψon emerged before the sex difference in τ. Changes in the levels of circulating hormones cannot explain the emergence of these sex differences, since there is a rather lengthy delay between the age at which degus reach sexual maturity and the age at which Ψon and τ become sexually dimorphic. However, postnatal exposure to gonadal hormones is required for sexual differentiation of Ψon and τ, since these sex differences were absent in prepubertally gonadectomized degus. These data suggest that gonadal hormones modulate the circadian system during adolescent development and provide a new model for postpubertal sexual differentiation of a central nervous system structure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3