Migratory disposition alters lean mass dynamics and protein metabolism in migratory white-throated sparrows (Zonotrichia albicollis)

Author:

Elowe Cory R.12ORCID,Gerson Alexander R.12ORCID

Affiliation:

1. Department of Biology, University of Massachusetts, Amherst, Massachusetts

2. Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts

Abstract

Migratory birds seasonally increase fat stores and the capacity to use fat to fuel long-distance migratory flights. However, lean mass loss also occurs during migratory flights and, if adaptive, should exhibit seasonal changes in the capacity for protein metabolism. We conducted a photoperiod manipulation using captive white-throated sparrows ( Zonotrichia albicollis) to investigate seasonal changes in protein metabolism between the nonmigratory “winter” condition and after exposure to a long-day “spring” photoperiod to stimulate the migratory condition. After photostimulation, birds in the migratory condition rapidly increased fat mass and activity of fat catabolism enzymes. Meanwhile, total lean mass did not change, but birds increased the activity of protein catabolism enzymes and lost more water and lean mass during water-restricted metabolic testing. These data suggest that more protein may be catabolized during migratory seasons, corresponding with more water loss. Counter to predictions, birds in the migratory condition also showed an approximately 30-fold increase in muscle expression of sarcolipin, which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis. Our documented changes to protein catabolism enzymes and whole animal lean mass dynamics may indicate that protein breakdown or increased protein turnover is adaptive during migration in songbirds.

Funder

Blodget Fund for Ornithological Research

National Science Foundation

UMASS | University of Massachusetts Amherst

Wilson Ornithological Society

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3