IGF-I binding in primary culture of muscle cells of rainbow trout: changes during in vitro development

Author:

Castillo Juan1,Le Bail Pierre-Yves2,Paboeuf Gilles2,Navarro Isabel1,Weil Claudine2,Fauconneau Benoit2,Gutiérrez Joaquim1

Affiliation:

1. Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain; and

2. Institut National de la Recherche Agronomique-Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement, Campus de Beaulieu, 35042 Cedex Rennes, France

Abstract

To characterize and study the variations of IGF-I binding during the development of trout muscle cells, in vitro experiments were conducted using myocyte cultures, and IGF-I binding assays were performed in three stages of cell development: mononuclear cells ( day 1), small myotubes ( day 4), and large myotubes ( day 10). Binding experiments were done by incubating cells with IGF-I for 12 h at 4°C. Specific IGF-I binding increased with the concentration of labeled IGF-I and reached a plateau at 32 pM. The displacement of cold human and trout IGF-I showed a very similar curve (EC50 = 1.19 ± 0.05 and 0.95 ± 0.05 nM, respectively). IGF binding proteins did not interfere significantly because displacement of labeled IGF-I by either cold trout recombinant IGF-I or Des (1–3) IGF-I resulted in similar curves. Insulin did not displace labeled IGF-I even at very high concentrations (>1 μM), which indicates the specificity of IGF-I binding. The amount of receptor (R0) increased from 253 ± 51 fmol/mg DNA on day 1 to 766 ± 107 fmol/mg DNA on day 10. However, the affinity ( K d) of IGF-I receptors did not change significantly during this development (from 1.29 ± 0.19 to 0.79 ± 0.13 nM). On the basis of our results, we conclude that rainbow trout muscle cells in culture express specific IGF-I receptors, which increase their number with development from mononuclear cells to large myotubes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3