A mathematical model of long-term renal sympathetic nerve activity inhibition during an increase in sodium intake

Author:

Karaaslan Fatih1,Denizhan Yagmur2,Hester Robert1

Affiliation:

1. Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi; and

2. Electrical and Electronics Engineering Department, Bogazici University, Istanbul, Turkey

Abstract

It is well known that renal nerves directly affect renal vascular resistance, tubular sodium reabsorption, and renin secretion. Inhibition of renal sympathetic nerve activity (RSNA) decreases renal vascular resistance, tubular sodium reabsorption, and renin secretion, leading to an increase in sodium excretion. Although several studies show that inhibition of RSNA promotes sodium excretion during an acute blood volume expansion, there is limited research relating to the importance of RSNA inhibition that contributes to sodium homeostasis during a long-term increase in sodium intake. Therefore, to dissect the underlying mechanisms of sodium excretion, a mathematical model of a cardiovascular system consisting of two kidneys, each with an independent RSNA, was developed. Simulations were performed to determine the responses of RSNA and sodium excretion to an increased sodium intake. In these simulations, RSNA in the left kidney was fixed at its normal steady-state value, while RSNA in the contralateral kidney was allowed to change normally in response to the increased sodium intake. The results demonstrate that the fixed-RSNA kidney excretes less sodium than the intact-RSNA collateral kidney. Because each kidney is exposed to the same arterial pressure and circulatory hormones, the impaired sodium excretion in the absence of RSNA inhibition supports the hypothesis that RSNA inhibition contributes to natriuresis in response to a long-term increase in sodium intake.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3