Endurance training enhances BDNF release from the human brain

Author:

Seifert Thomas1,Brassard Patrice1,Wissenberg Mads1,Rasmussen Peter1,Nordby Pernille2,Stallknecht Bente2,Adser Helle3,Jakobsen Anne H.3,Pilegaard Henriette3,Nielsen Henning B.1,Secher Niels H.1

Affiliation:

1. Department of Anesthesia,

2. Department of Biomedical Sciences, Section of Systems Biology Research,

3. Department of Biology, Center of Inflammation and Metabolism and The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark

Abstract

The circulating level of brain-derived neurotrophic factor (BDNF) is reduced in patients with major depression and type-2 diabetes. Because acute exercise increases BDNF production in the hippocampus and cerebral cortex, we hypothesized that endurance training would enhance the release of BDNF from the human brain as detected from arterial and internal jugular venous blood samples. In a randomized controlled study, 12 healthy sedentary males carried out 3 mo of endurance training ( n = 7) or served as controls ( n = 5). Before and after the intervention, blood samples were obtained at rest and during exercise. At baseline, the training group (58 ± 106 ng·100 g−1·min−1, means ± SD) and the control group (12 ± 17 ng·100 g−1·min−1) had a similar release of BDNF from the brain at rest. Three months of endurance training enhanced the resting release of BDNF to 206 ± 108 ng·100 g−1·min−1 ( P < 0.05), with no significant change in the control subjects, but there was no training-induced increase in the release of BDNF during exercise. Additionally, eight mice completed a 5-wk treadmill running training protocol that increased the BDNF mRNA expression in the hippocampus (4.5 ± 1.6 vs. 1.4 ± 1.1 mRNA/ssDNA; P < 0.05), but not in the cerebral cortex (4.0 ± 1.4 vs. 4.6 ± 1.4 mRNA/ssDNA) compared with untrained mice. The increased BDNF expression in the hippocampus and the enhanced release of BDNF from the human brain following training suggest that endurance training promotes brain health.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 332 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3