Seven days of ischemic preconditioning augments hypoxic exercise ventilation and muscle oxygenation in recreationally trained males

Author:

Seeley Afton D.123ORCID,Caldwell Aaron R.23ORCID,Cahalin Lawrence P.4,Ahn Soyeon5,Perry Arlette C.1,Arwari Brian1,Jacobs Kevin A.1

Affiliation:

1. Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, Florida

2. Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts

3. Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee

4. Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, Florida

5. Department of Educational and Psychological Studies, School of Education and Human Development, University of Miami, Coral Gables, Florida

Abstract

This investigation sought to assess whether single or repeated bouts of ischemic preconditioning (IPC) could improve oxyhemoglobin saturation ([Formula: see text]) and/or attenuate reductions in muscle tissue saturation index (TSI) during submaximal hypoxic exercise. Fifteen healthy young men completed submaximal graded exercise under four experimental conditions: 1) normoxia (NORM), 2) hypoxia (HYP) [oxygen fraction of inspired air ([Formula: see text]) = 0.14, ∼3,200 m], 3) hypoxia preceded by a single session of IPC (IPC1-HYP), and 4) hypoxia preceded by seven sessions of IPC, one a day for 7 consecutive days (IPC7-HYP). IPC7-HYP heightened minute ventilation (V̇e) at 80% HYP peak cycling power output ( Wpeak) (+10.47 ± 3.35 L·min−1, P = 0.006), compared with HYP, as a function of increased breathing frequency. Both IPC1-HYP (+0.17 ± 0.04 L·min−1, P < 0.001) and IPC7-HYP (+0.16 ± 0.04 L·min−1, P < 0.001) elicited greater oxygen consumption (V̇o2) across exercise intensities compared with NORM, whereas V̇o2 was unchanged with HYP alone. [Formula: see text] was unchanged by either IPC condition at any exercise intensity, yet the reduction of muscle TSI during resting hypoxic exposure was attenuated by IPC7-HYP (+9.9 ± 3.6%, P = 0.040) compared with HYP, likely as a function of reduced local oxygen extraction. Considering all exercise intensities, IPC7-HYP attenuated reductions of TSI with HYP (+6.4 ± 1.8%, P = 0.001). Seven days of IPC heightens ventilation, posing a threat to ventilatory efficiency, during high-intensity submaximal hypoxic exercise and attenuates reductions in hypoxic resting and exercise muscle oxygenation in healthy young men. A single session of IPC may be capable of modulating hypoxic ventilation; however, our present population was unable to demonstrate this with certainty.

Funder

United States Department of Energy

University of Miami

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3