An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations

Author:

Kregel Kevin C.,Zhang Hannah J.

Abstract

Aging is an inherently complex process that is manifested within an organism at genetic, molecular, cellular, organ, and system levels. Although the fundamental mechanisms are still poorly understood, a growing body of evidence points toward reactive oxygen species (ROS) as one of the primary determinants of aging. The “oxidative stress theory” holds that a progressive and irreversible accumulation of oxidative damage caused by ROS impacts on critical aspects of the aging process and contributes to impaired physiological function, increased incidence of disease, and a reduction in life span. While compelling correlative data have been generated to support the oxidative stress theory, a direct cause-and-effect relationship between the accumulation of oxidatively mediated damage and aging has not been strongly established. The goal of this minireview is to broadly describe mechanisms of in vivo ROS generation, examine the potential impact of ROS and oxidative damage on cellular function, and evaluate how these responses change with aging in physiologically relevant situations. In addition, the mounting genetic evidence that links oxidative stress to aging is discussed, as well as the potential challenges and benefits associated with the development of antiaging interventions and therapies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3