Orexin facilitates the ventilatory and behavioral responses of rats to hypoxia

Author:

Spinieli Richard L.12,Ben Musa Ruwaida12,Cornelius-Green Jennifer12,Hasser Eileen M.12ORCID,Cummings Kevin J.12ORCID

Affiliation:

1. Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri

2. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri

Abstract

Orexin neurons are sensitive to CO2 and contribute to cardiorespiratory homeostasis as well as sensorimotor control. Whether orexin facilitates respiratory and behavioral responses to acute hypoxia is unclear. We hypothesized that orexin neurons are activated by acute hypoxia and that orexin facilitates the hypoxic ventilatory response (HVR), as well as the arterial blood pressure (ABP) and behavioral (movement) responses to acute hypoxia. We further hypothesized that orexin has greater effects in the active phase of the rat circadian cycle, when orexin neurons have high activity. Using whole body plethysmography with EEG, EMG, and the dual-orexin receptor (OxR) antagonist suvorexant (20 mg/kg ip), we determined the effect of OxR blockade on the respiratory, ABP, and behavioral responses of adult rats to acute, graded hypoxia ([Formula: see text]= 0.15, 0.13, 0.11, and 0.09) and hyperoxic hypercapnia ([Formula: see text]= 0.05; [Formula: see text]= 0.95). OxR blockade had no effect on eupnea. OxR blockade significantly reduced the HVR in both inactive and active phases, with a stronger effect in the active phase. OxR blockade reduced the behavioral response to acute hypoxia in the active phase. The central component of the ventilatory and the ABP responses to hypercapnia were reduced by OxR blockade solely in the inactive phase. In the inactive phase, hypoxia activated ∼10% of orexin neurons in the perifornical hypothalamus. These data suggest that orexin neurons participate in the peripheral chemoreflex to facilitate the ventilatory and behavioral responses to acute hypoxia in rats, particularly in the active phase. Orexin also facilitates central chemoreflex responses to CO2 in the inactive phase.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3