Combining hypoxia with thermal stimuli in humans: physiological responses and potential sex differences

Author:

Wait Seaver O.1,Charkoudian Nisha2ORCID,Skinner Jared W.1ORCID,Smith Caroline J.1ORCID

Affiliation:

1. Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, United States

2. United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States

Abstract

Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced V̇o2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.

Funder

DOD | United States Army | MEDCOM | U.S. Army Medical Research and Development Command

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3