Dynamics of interstitial and intracellular pH in evolving brain infarct

Author:

Nedergaard M.1,Kraig R. P.1,Tanabe J.1,Pulsinelli W. A.1

Affiliation:

1. Department of Neurology and Neuroscience, Cornell University MedicalCollege, New York, New York 10021.

Abstract

We examined the relationships between intracellular pH (pHi) and interstitial pH (pHe) in a rat model of focal ischemia. Interstitial pH was measured with pH-sensitive microelectrodes, and the average tissue pH was measured with the [14C]dimethadione method in rats subjected to occlusion of the right middle cerebral and common carotid arteries (MCA-CCAO). In normal cortex, pHe and pHi were 7.24 +/- 0.97 and 7.01 +/- 0.13 (means +/- SD, n = 6), respectively. In the ischemic cortex, pHe fell to 6.43 +/- 0.13, whereas pHi decreased only to 6.86 +/- 0.11 (n = 5) 1 h after MCA-CCAO. After 4 h of ischemia, the pHe was 6.61 +/- 0.09 and pHi was 6.62 +/- 0.20 (n = 4). Treatment with glucose before ischemia markedly lowered the pHe (5.88 +/- 0.17) but not pHi (6.83 +/- 0.03, n = 4) measured 1 h after ischemia. In the ischemic cortex of animals made hypoglycemic by pretreatment with insulin, neither pHe (7.25 +/- 0.06) nor pHi (6.99 +/- 0.13, n = 4) decreased. The demonstrated difference in pHi and pHe indicates that some cells remained sufficiently functional to maintain a plasma membrane gradient of protons within the evolving infarct. If the calculated pHi values accurately reflect the true pHi of cells within zones of severe focal ischemia, then cerebral infarction can proceed at pHi levels not greatly altered from normal.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An acidic pH environment converts necroptosis to apoptosis;Biochemical and Biophysical Research Communications;2024-09

2. Cholestane-3β,5α,6β-Triol Inhibits Acid-Sensing Ion Channels and Reduces Acidosis-Mediated Ischemic Brain Injury;Stroke;2024-06

3. A Multimodal Lab-On-CMOS Based Biosensor System;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

4. Acid-Sensitive Outwardly Rectifying Cl- Current in OV2944 Mouse Ovarian Cancer Cells;Cellular Physiology and Biochemistry;2024-04-20

5. Low pH condition impairs BP‐IgG binding to the basement membrane zone;The Journal of Dermatology;2024-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3