Work-heat tolerance in endurance-trained rats

Author:

Fruth J. M.,Gisolfi C. V.

Abstract

The purpose of this study was to determine if training in a cool (23 degrees C) environment would alter the potential for mortality or for tissue damage (as indicated by serum transaminase concentrations) during a work-heat tolerance test (WHTT) to exhaustion. Twenty-nine male Sprague-Dawley rats were trained (T) on a motorized treadmill for 6 wk, while 34 control animals of similar weight remained sedentary (S). Tissue damage among survivors 24 h following the WHTT and percent mortality were the same in both groups; however, T survivors 1) continued the test 44% longer (P less than 0.05), 2) performed significantly more work (P less than 0.05), and 3) sustained a 120% larger (P less than 0.05) thermal load [product of time and colonic temperature (Tc) above 40 degrees C] than S survivors. Mortality first occurred at a range in Tc of 40.6–41.0 degrees C in the S group compared with a range of 41.6–42.0 degrees C in the T group. Thus endurance T rats can run longer in the heat, sustain greater thermal loads, and are less susceptible to work-induced thermal fatality than S rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3