Role of the parasympathetic nervous system in acute lung response to ozone

Author:

Beckett W. S.,McDonnell W. F.,Horstman D. H.,House D. E.

Abstract

We conducted an ozone (O3) exposure study using atropine, a muscarinic receptor blocker, to determine the role of the parasympathetic nervous system in the acute response to O3. Eight normal subjects with predetermined O3 responsiveness were randomly assigned an order for four experimental exposures. For each exposure a subject inhaled either buffered saline or atropine aerosol followed by exposure either to clean air or 0.4 ppm O3. Measurements of lung mechanics, ventilatory response to exercise, and symptoms were obtained before and after exposure. O3 exposure alone resulted in significant changes in specific airway resistance, forced vital capacity (FVC), forced expiratory flow rates, tidal volume (VT), and respiratory rate (f). Atropine pretreatment prevented the significant increase in airway resistance with O3 exposure and partially blocked the decrease in forced expiratory flow rates but did not prevent a significant fall in FVC, changes in f and VT, or the frequency of reported respiratory symptoms after O3. These results suggest that the increase in pulmonary resistance during O3 exposure is mediated by a parasympathetic mechanism and that changes in other measured variables are mediated, at least partially, by mechanisms not dependent on muscarinic cholinergic receptors of the parasympathetic nervous system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3