Inflammation and oxygen free radical formation during pulmonary ischemia-reperfusion injury

Author:

Hamvas A.1,Palazzo R.1,Kaiser L.1,Cooper J.1,Shuman T.1,Velazquez M.1,Freeman B.1,Schuster D. P.1

Affiliation:

1. Department of Pediatrics, Washington University Medical School, St. Louis, Missouri 63110.

Abstract

In a companion study, we showed that 2 h of warm unilateral lung ischemia followed by reperfusion resulted in bilateral tissue injury, indicated by increases in extravascular density (EVD) and permeability, measured as the pulmonary transcapillary escape rate (PTCER) for radiolabeled transferrin. EVD and PTCER measurements were obtained with the quantitative imaging technique of positron emission tomography (PET). In the current study, we evaluated this increase in EVD histologically and correlated EVD and PTCER with measurements of oxidant-reactive sulfhydryls (RSH) in plasma as a marker of oxygen free radical (OFR) formation. Histologically edema, leukocyte infiltration, and hemorrhage were all present on the ischemic side, but only after reperfusion, whereas only neutrophil infiltration was observed on the nonischemic side. Histology scores correlated with EVD (r = 0.81) and PTCER (r = 0.75), but permeability was abnormal at times even in the absence of neutrophil infiltration. Plasma RSH concentration from the ischemic lung decreased significantly (P less than 0.05) during pulmonary ischemia (i.e., before reperfusion) and returned to baseline on reperfusion. The degree of RSH oxidation did not correlate with the severity of injury as measured by PET or histology. Thus pulmonary ischemia-reperfusion injury is characterized by inflammation, hemorrhage, edema, and OFR formation. Injury occurred after reperfusion, not after ischemia alone. In addition, injury to the contralateral nonischemic lung suggests a neutrophil-independent circulating mediator of injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3