Increased energy intake minimizes weight loss in men at high altitude

Author:

Butterfield G. E.1,Gates J.1,Fleming S.1,Brooks G. A.1,Sutton J. R.1,Reeves J. T.1

Affiliation:

1. Geriatric Research, Education, and Clinical Center, Palo Alto Veterans Affairs Medical Center, California 94304.

Abstract

The hypothesis that high-altitude weight loss can be prevented by increasing energy intake to meet energy requirement was tested in seven men, 23.7 +/- 4.3 (SD) yr, taken to 4,300 m for 21 days. Energy intake required to maintain body weight at sea level was found to be 3,118 +/- 300 kcal/day, as confirmed by nitrogen balance. Basal metabolic rate (BMR), determined by indirect calorimetry, increased 27% on day 2 at altitude and then decreased and reached a plateau at 17% above the sea level BMR by day 10. Energy expended during strenuous activities was 37% lower at altitude than at sea level. Fecal excretion of energy, nitrogen, total fiber, and total volatile fatty acids was not significantly affected by altitude. Energy intake at altitude was adjusted after 1 wk, on the basis of the increased BMR, to 3,452 +/- 452 kcal/day. Mean nitrogen balance at altitude was negative (-0.25 +/- 0.71 g/day) before energy intake was adjusted but rose significantly thereafter (0.20 +/- 0.71 and 0.44 +/- 0.66 g/day during weeks 2 and 3). Mean body weight decreased 2.1 +/- 1.0 kg over the 3 wk of the study, but the rate of weight loss was significantly diminished after the increase in energy intake (201 +/- 75 vs. 72 +/- 48 g/day). Individual regression lines drawn through 7-day segments of body weight showed that in four of seven subjects the slopes of body weight were not significantly different from zero after the 2nd wk. Thus weight loss ceased in four of seven men in whom increased BMR at altitude was compensated with increased energy intake.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diet, Supplementation and Nutritional Habits of Climbers in High Mountain Conditions;Nutrients;2023-09-29

2. HYDRATION STRATEGIES AT 4000 M ALTITUDE SOJOURN IN A MARATHONER;REV INT MED CIENC AC;2023

3. High- versus Low-Flow Extracorporeal Respiratory Support in Experimental Hypoxemic Acute Lung Injury;American Journal of Respiratory and Critical Care Medicine;2023-05-01

4. Climate‐Related Human Biological Variation;A Companion to Biological Anthropology;2023-03-08

5. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review;International Journal of Environmental Research and Public Health;2023-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3