Kinetics of CO uptake and diffusing capacity in transition from rest to steady-state exercise

Author:

Kinker J. R.1,Haffor A. S.1,Stephan M.1,Clanton T. L.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Ohio State University, Columbus 43210.

Abstract

In the transition from rest to steady-state exercise, O2 uptake from the lungs (VO2) depends on the product of pulmonary blood flow and pulmonary arteriovenous O2 content difference. The kinetics of pulmonary blood flow are believed to be somewhat faster than changes in pulmonary arteriovenous O2 content difference. We hypothesized that during CO breathing, the kinetics of CO uptake (VCO) and diffusing capacity for CO (DLCO) should be faster than VO2 because changes in pulmonary arteriovenous CO content difference should be relatively small. Six subjects went abruptly from rest to constant exercise (inspired CO fraction = 0.0005) at 40, 60, and 80% of their peak VO2, measured with an incremental test (VO2peak). At all exercise levels, DLCO and VCO rose faster than VO2 (P less than 0.001), and DLCO rose faster than VCO (P less than 0.001). For example, at 40% VO2peak, the time constant (tau) for DLCO in phase 2 was 19 +/- 5 (SD), 24 +/- 5 s for VCO, and 33 +/- 5 s for VO2. Both VCO and DLCO increased with exercise intensity but to a lesser degree than VO2 at all exercise intensities (P less than 0.001). In addition, no significant rise in DLCO was observed between 60 and 80% VO2peak. We conclude that the kinetics of VCO and DLCO are faster than VO2, suggesting that VCO and DLCO kinetics reflect, to a greater extent, changes in pulmonary blood flow and thus recruitment of alveolar-capillary surface area. However, other factors, such as the time course of ventilation, may also be involved.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3