Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion

Author:

Sawka M. N.1,Young A. J.1,Rock P. B.1,Lyons T. P.1,Boushel R.1,Freund B. J.1,Muza S. R.1,Cymerman A.1,Dennis R. C.1,Pandolf K. B.1,Valeri C. R.1

Affiliation:

1. United States Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760–5007, USA.

Abstract

We studied sea-level residents during 13 days of altitude acclimatization to determine 1) altitude acclimatization effects on erythrocyte volume and plasma volume, 2) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations, 3) if an increased blood oxygen content alters erythropoietin responses during altitude acclimatization, and 4) mechanisms responsible for plasma loss at altitude. Sixteen healthy men had a series of hematologic measurements made at sea level, on the first and ninth days of altitude (4,300 m) residence, and after returning to sea level. Twenty-four hours before the ascent to altitude, one group received a 700-ml infusion of autologous erythrocytes (42% hematocrit), whereas the other group received only a saline infusion. Erythrocyte infusion increased erythrocyte volume by approximately 10%, whereas saline infusion had no effect; in addition, initially at altitude, blood oxygen content was 8% higher in erythrocyte-infused than in saline-infused subjects. The new findings regarding altitude acclimatization are summarized as follows: 1) erythrocyte volume does not change during the first 13 days and is not affected by prior exogenous expansion, 2) a modest increase in blood oxygen content does not modify erythropoietin responses, 3) plasma losses are related to vascular protein losses, and 4) exogenous erythrocyte volume expansion coincides with transient increases in plasma loss, vascular protein loss, and mean arterial pressure elevation. These findings better define human blood volume responses during altitude acclimatization.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3