Effects of oxygen tension and glucose concentration on ischemic injury in ventilated ferret lungs

Author:

Becker P. M.1,Pearse D. B.1,Sylvester J. T.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

Abstract

In the ventilated ischemic lung, oxygen tension will increase at a time when glucose depletion may impair antioxidant defenses, thereby predisposing the lung to injury mediated by oxygen radicals. In the unventilated ischemic lung, however, glucose depletion in the setting of low oxygen tension may decrease production of ATP, leading to injury by a different mechanism. In this study, we evaluated the role of both oxygen tension and glucose concentration on ischemic injury in isolated ferret lungs. Injury, defined as an increase in vascular permeability, was assessed by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb) after 3 h of normothermic (37 degrees C) ischemia without reperfusion. Lungs were ventilated with either 95% O2–5% CO2 or 0% O2–5% CO2. The vasculature was flushed with physiological salt solution containing either 15 mM glucose (hyperoxia-glucose, anoxia-glucose), 15 mM sucrose (hyperoxia-sucrose, anoxia-sucrose), or no substrate (hyperoxia-no substrate, anoxia-no substrate) (n = 6 for each condition). Kf and sigma alb in hyperoxia-no substrate group did not differ from values in minimally ischemic normoxic normoglycemic ferret lungs. Without glucose, ischemic injury was worse in anoxic than in hyperoxic lungs. With glucose, ischemic injury was worse in hyperoxic than in anoxic lungs. Glucose exacerbated injury in hyperoxic, but not anoxic, lungs. These results indicate that ischemic injury in these lungs depended on both oxygen tension and glucose concentration and suggest that both oxygen radical generation and ATP depletion during ischemia may contribute to the development of this injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3