Skeletal muscle mass and the reduction ofV˙o 2 max in trained older subjects

Author:

Proctor David N.1,Joyner Michael J.1

Affiliation:

1. Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905

Abstract

Proctor, David N., and Michael J. Joyner. Skeletal muscle mass and the reduction ofV˙o 2 max in trained older subjects. J. Appl. Physiol.82(5): 1411–1415, 1997.—The role of skeletal muscle mass in the age-associated decline in maximal O2 uptake (V˙o 2 max) is poorly defined because of confounding changes in muscle oxidative capacity and in body fat and the difficulty of quantifying active muscle mass during exercise. We attempted to clarify these issues by examining the relationship between several indexes of muscle mass, as estimated by using dual-energy X-ray absorptiometry and treadmillV˙o 2 max in 32 chronically endurance-trained subjects from four groups ( n = 8/group): young men (20–30 yr), older men (56–72 yr), young women (19–31 yr), and older women (51–72 yr).V˙o 2 max per kilogram body mass was 26 and 22% lower in the older men (45.9 vs. 62.0 ml ⋅ kg−1 ⋅ min−1) and older women (40.0 vs. 51.5 ml ⋅ kg−1 ⋅ min−1). These age differences were reduced to 14 and 13%, respectively, whenV˙o 2 max was expressed per kilogram of appendicular muscle. When appropriately adjusted for age and gender differences in appendicular muscle mass by analysis of covariance, whole bodyV˙o 2 max was 0.50 ± 0.09 l/min less ( P < 0.001) in the older subjects. This effect was similar in both genders. These findings suggest that the reducedV˙o 2 max seen in highly trained older men and women relative to their younger counterparts is due, in part, to a reduced aerobic capacity per kilogram of active muscle independent of age-associated changes in body composition, i.e., replacement of muscle tissue by fat. Because skeletal muscle adaptations to endurance training can be well maintained in older subjects, the reduced aerobic capacity per kilogram of muscle likely results from age-associated reductions in maximal O2 delivery (cardiac output and/or muscle blood flow).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3