Intact Ability to Learn Internal Models of Arm Dynamics in Huntington's Disease But Not Cerebellar Degeneration

Author:

Smith Maurice A.1,Shadmehr Reza1

Affiliation:

1. Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland

Abstract

Two different compensatory mechanisms are engaged when the nervous system senses errors during a reaching movement. First, on-line feedback control mechanisms produce in-flight corrections to reduce errors in the on-going movement. Second, these errors modify the internal model with which the motor plan is transformed into motor commands for the subsequent movements. What are the neural mechanisms of these compensatory systems? In a previous study, we reported that while on-line error correction was disturbed in patients with Huntington's disease (HD), it was largely intact in patients with cerebellar degeneration. Here we altered dynamics of reaching and studied the effect of error in one trial on the motor commands that initiated the subsequent trial. We observed that in patients with cerebellar degeneration, motor commands changed from trial-to-trial by an amount that was comparable to control subjects. However, these changes were random and were uninformed by the error in the preceding trial. In contrast, the change in motor commands of HD patients was strongly related to the error in the preceding trial. This error-dependent change had a sensitivity that was comparable to healthy controls. As a result, HD patients exhibited no significant deficits in adapting to novel arm dynamics, whereas cerebellar subjects were profoundly impaired. These results demonstrate a double dissociation between on-line and trial-to-trial error correction suggesting that these compensatory mechanisms have distinct neural bases that can be differentially affected by disease.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3