High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation

Author:

Begum Najma12,Ragolia Louis1

Affiliation:

1. Diabetes Research Laboratory, Winthrop University Hospital, Mineola 11501; and

2. School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794

Abstract

Our laboratory has recently demonstrated a role for the phosphatidylinositol 3-kinase-mediated inducible NO synthase (iNOS) signaling pathway in acute regulation of insulin-induced mitogen-activated protein phosphatase-1 (MKP-1) expression in primary cultures of rat aortic vascular smooth muscle cells (VSMCs) (N. Begum, L. Ragolia, M. McCarthy, and N. Duddy. J. Biol. Chem. 273: 25164–25170, 1998). We now show that prolonged treatment of VSMCs with 100 nM insulin and high glucose (25 mM) for 12–24 h, to mimic hyperinsulinemia and hyperglycemia, completely blocked MKP-1 mRNA and protein expression in response to subsequent acute insulin treatment. To understand the mechanism of insulin resistance induced by high glucose and insulin, we studied the regulation of iNOS protein induction in these cells. Both high glucose and chronic insulin treatment caused a marked impairment of iNOS induction in response to acute insulin. Blocking of signaling via the p38 mitogen-activated protein kinase (MAPK) pathway by prior treatment for 1 h with SB-203580, a synthetic p38 MAPK inhibitor, completely prevented the inhibition of iNOS induced by high glucose and insulin and restored MKP-1 induction to levels observed with acute insulin treatment. In contrast, PD-98059, a MEK inhibitor, had no effect. Furthermore, high glucose and chronic insulin treatment caused sustained p38 MAPK activation. We conclude 1) that chronic insulin and high glucose-induced insulin resistance is accompanied by marked reductions in both iNOS and MKP-1 inductions due to p38 MAPK activation that leads to excessive cell growth and 2) that p38 MAPK/extracellular signal-regulated kinase pathways regulate iNOS induction, thereby controlling MKP-1 expression, which in turn inactivates MAPKs as a feedback mechanism and inhibits cell growth.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3