Flow-mediated NO release from endothelial cells is independent of K+ channel activation or intracellular Ca2+

Author:

O'Neill W. C.1

Affiliation:

1. Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Abstract

The role of K+ channels and intracellular [Ca2+] in flow-induced nitric oxide (NO) production was investigated in bovine aortic endothelial cells in culture. NO release (measured as nitrite production) and K+ channel activity (measured as 86Rb+ efflux) were measured in cells grown on collagen-coated microcarrier beads and perfused in a column. An eightfold increase in flow produced a rapid (within 1 min), sustained, and reversible sixfold increase in NO release. Efflux of 86Rb+ also increased but rapidly returned to baseline and then transiently decreased when flow was decreased. This was probably due to boundary layer washout rather than to K+ channel activation, because an identical pattern was seen for release of [3H]ouabain. Neither tetraethylammonium nor increasing medium [K+] to block K+ currents prevented flow-induced NO release. Removal of medium Ca2+ or chelation of intracellular Ca2+ also did not block flow-mediated NO release. The results demonstrate that flow rapidly increases NO release from endothelial cells but that this increase in NO release is not dependent on activation of K+ channels or changes in intracellular [Ca2+].

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3