Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium

Author:

Kim Sung Huhn,Kim Kyunghee X.,Raveendran Nithya N.,Wu Tao,Pondugula Satyanarayana R.,Marcus Daniel C.

Abstract

Reissner's membrane epithelium forms much of the barrier that produces and sustains the large ionic differences between cochlear endolymph and perilymph. We have reported that Reissner's membrane contributes to normal cochlear function by absorbing Na+ from endolymph via amiloride-sensitive channels in gerbil inner ear. We used mouse Reissner's membrane to 1) identify candidate genes involved in the Na+ transport pathway, 2) determine whether their level of expression was regulated by the synthetic glucocorticoid dexamethasone, and 3) obtain functional evidence for the physiological importance of these genes. Transcripts were present for α-, β-, and γ-subunits of epithelial Na+ channel (ENaC); corticosteroid receptors GR (glucocorticoid receptor) and MR (mineralocorticoid receptor); GR agonist regulator 11β-hydroxysteroid dehydrogenase (HSD) type 1 (11β-HSD1); Na+ transport control components SGK1, Nedd4-2, and WNKs; and K+ channels and Na+-K+-ATPase. Expression of the MR agonist regulator 11β-HSD2 was not detected. Dexamethasone upregulated transcripts for α- and β-subunits of ENaC (∼6- and ∼3-fold), KCNK1 (∼3-fold), 11β-HSD1 (∼2-fold), SGK1 (∼2-fold), and WNK4 (∼3-fold). Transepithelial currents from the apical to the basolateral side of Reissner's membrane were sensitive to amiloride (IC50 ∼0.7 μM) and benzamil (IC50 ∼0.1 μM), but not EIPA (IC50 ∼34 μM); amiloride-blocked transepithelial current was not immediately changed by forskolin/IBMX. Currents were reduced by ouabain, lowered bath Na+ concentration (from 150 to 120 mM), and K+ channel blockers (XE-991, Ba2+, and acidification from pH 7.4 to 6.5). Dexamethasone-stimulated current and gene expression were reduced by mifepristone, but not spironolactone. These molecular, pharmacological, and functional observations are consistent with Na+ absorption by mouse Reissner's membrane, which is mediated by apical ENaC and/or other amiloride-sensitive channels, basolateral Na+-K+-ATPase, and K+-permeable channels and is under the control of glucocorticoids. These results provide an understanding and a molecular definition of an important transport function of Reissner's membrane epithelium in the homeostasis of cochlear endolymph.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3