Viscoelasticity of the human red blood cell

Author:

Puig-de-Morales-Marinkovic Marina,Turner Kevin T.,Butler James P.,Fredberg Jeffrey J.,Suresh Subra

Abstract

We report here the first measurements of the complex modulus of the isolated red blood cell (RBC). Because the RBC is often larger than capillary diameter, important determinants of microcirculatory function are RBC deformability and its changes with pathologies, such as sickle cell disease and malaria. A functionalized ferrimagnetic microbead was attached to the membrane of healthy RBC and then subjected to an oscillatory magnetic field. The resulting torque caused cell deformation. From the oscillatory forcing and resulting bead motions, which were tracked optically, we computed elastic and frictional moduli, g′ and g‴, respectively, from 0.1 to 100 Hz. The g′ was nearly frequency independent and dominated the response at all but the highest frequencies measured. Over three frequency decades, g‴ increased as a power law with an exponent of 0.64, a result not predicted by any simple model. These data suggest that RBC relaxation times that have been reported previously, and any models that rest upon them, are artifactual; the artifact, we suggest, arises from forcing to an exponential fit data of limited temporal duration. A linear range of response was observed, but, as forcing amplitude increased, nonlinearities became clearly apparent. A finite element model suggests that membrane bending was localized to the vicinity of the bead and dominated membrane shear. While the mechanisms accounting for these RBC dynamics remain unclear, methods described here establish new avenues for the exploration of connections among the mechanical, chemical, and biological characteristics of the RBC in health and disease.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3