Identification and functional implication of a Rho kinase-dependent moesin-EBP50 interaction in noradrenaline-stimulated artery

Author:

Baeyens Nicolas1,Horman Sandrine2,Vertommen Didier3,Rider Mark3,Morel Nicole1

Affiliation:

1. Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium;

2. Division of Cardiology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; and

3. De Duve Institute, Protein Phosphorylation Unit, Brussels, Belgium

Abstract

Ezrin, radixin, and moesin (ERM) proteins are known to be substrates of Rho kinase (ROCK), a key player in vascular smooth muscle regulation. Their function in arteries remains to be elucidated. The objective of the present study was to investigate ERM phosphorylation and function in rat aorta and mesenteric artery and the influence of ERM-binding phosphoprotein 50 (EBP50), a scaffold partner of ERM proteins in several cell types. In isolated arteries, ERM proteins are phosphorylated by PKC and ROCK with different kinetics after either agonist stimulation or KCl-induced depolarization. Immunoprecipitation of EBP50 in noradrenaline-stimulated arteries allowed identification of its interaction with moesin and several other proteins involved in cytoskeleton regulation. This interaction was inhibited by Y27632, a ROCK inhibitor. Moesin or EBP50 depletion after small interfering RNA transfection by reverse permeabilization in intact mesenteric arteries both potentiated the contractility in response to agonist stimulation without any effect on contractile response induced by high KCl. This effect was preserved in ionomycin-permeabilized arteries. These results indicate that, in agonist-stimulated arteries, the activation of ROCK leads to the binding of moesin to EBP50, which interacts with several components of the cytoskeleton, resulting in a decrease in the contractile response.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3