Energy use by contractile and noncontractile processes in skeletal muscle estimated by 31P-NMR

Author:

Baker A. J.1,Brandes R.1,Schendel T. M.1,Trocha S. D.1,Miller R. G.1,Weiner M. W.1

Affiliation:

1. Magnetic Resonance Unit, University of California, SanFrancisco.

Abstract

The goal of this study was to separately determine ATP use by contractile and noncontractile processes in stimulated skeletal muscle. ATP use by tetanically stimulated bullfrog semitendinosus muscle was monitored at room temperature with in vivo 31P-nuclear magnetic resonance. Oxidative phosphorylation was inhibited by cyanide, and ATP use could therefore be calculated by accounting for ATP derived from the creatine kinase (CK) reaction (measured from decreases in phosphocreatine) and from glycolysis (estimated from decreases of intracellular pH). In unfatigued muscles stimulated at optimal length for force production, total ATP utilization (representing both contractile and noncontractile processes) was 2.5 +/- 0.09 (SE) mM/s (n = 6; 53% ATP from glycolysis, 47% from CK). In separate experiments, cross-bridge interactions between actin and myosin filaments were eliminated by increasing sarcomere length; therefore, with stimulation, residual ATP use reflected only noncontractile processes. In stimulated stretched muscles, ATP utilization was reduced compared with unstretched muscles to 1.07 +/- 0.08 mM/s (61% ATP from glycolysis, 39% from CK). These findings suggest that, during contraction near optimum length, a large proportion (approximately 43%) of ATP is used by noncontractile processes, with more ATP derived from glycolysis than from CK.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3