Mechanisms of alpha2-adrenoceptor-mediated inhibition in rabbit carotid body

Author:

Almaraz L.1,Perez-Garcia M. T.1,Gomez-Nino A.1,Gonzalez C.1

Affiliation:

1. Departamento de Bioquimica, Instituto de Biologia y GeneticaMolecular, Facultad de Medicina, Universidad de Valladolid, Spain.

Abstract

We have used the in vitro preparation of the intact carotid body (CB) and isolated chemoreceptor cells to elucidate the distribution and function of alpha2-adrenoreceptors. The significance of the study lies in the fact that norepinephrine (NE), being the neurotransmitter of the sympathetic innervation to the CB, is also abundant in chemoreceptor cells. In intact CB whose catecholamine (CA) deposits had been labeled by prior incubation with the CA precursor [3H]tyrosine, the alpha2-antagonist yohimbine (10 microM) potentiated the low-PO2 (33 and 60 mmHg)-induced release of [3H]CA by 100 and 53%, respectively. Yohimbine (10 microM) and SKF-86466 (50 microM; another alpha2-antagonist) reversed the inhibition of the release of [3H]CA produced by the alpha2-receptor agonists clonidine and UK-14304 (10 microM). The increase in adenosine 3',5'-cyclic monophosphate produced by low PO2 was further augmented by yohimbine and nearly halved by UK-14304 and clonidine. In isolated chemoreceptor cells, UK-14304 and NE inhibited voltage-dependent Ca2+ currents by 28 and 32%, respectively. These results indicate that alpha2-receptors are present in chemoreceptor cells, where they reduce the release of [3H]CA. Inhibition of adenylate cyclase(s) and Ca2+ channels may be involved in this effect. Using intact CB from normal and chronically sympathectomized animals, we demonstrated a specific accumulation of [3H]NE in intraglomic sympathetic endings. Hypoxia (PO2 approximately 33 mmHg) did not elicit release of [3H]NE from the sympathetic endings, but high extracellular K+ (K+(e)) induced a release of [3H]NE that was inhibited by alpha2-agonists and augmented by alpha2-antagonists. These findings demonstrate that alpha2-receptors are also present in the sympathetic endings of the CB, where they modulate the release of NE. As a whole, this work provides a more detailed understanding of the role of the sympathetic innervation in the control of the CB chemoreceptor function, including the cellular mechanisms of the action of NE.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3