Inhibition of Wnt/β-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury

Author:

Wang Cong123,Zhu Huiming123,Sun Zhaorui4,Xiang Zou5,Ge Yuanyuan123,Ni Can123,Luo Zhaowen123,Qian Weiping6,Han Xiaodong123

Affiliation:

1. Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, Nanjing, Jiangsu, China;

2. Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China;

3. State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China;

4. Department of Emergency, Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu, China;

5. Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; and

6. State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China

Abstract

Idiopathic pulmonary fibrosis is a progressive lung disorder of unknown etiology. Previous studies have shown that aberrant activation of the Wnt/β-catenin signaling cascade occurs in lungs of patients with idiopathic pulmonary fibrosis. Given the important roles of the Wnt/β-catenin signaling pathway in the development of pulmonary fibrosis, we targeted this pathway for the intervention of pulmonary fibrosis with XAV939, a small molecule that specifically inhibits Tankyrase 1/2, eventually leading to the degradation of β-catenin and suppression of the Wnt/β-catenin signaling pathway. Our results demonstrated that XAV939 significantly inhibited the activation of Wnt/β-catenin signaling and attenuated bleomycin-induced lung fibrosis in mice, and thus improved the survival of mice with lung injury. Interestingly, previous investigations have confirmed that endogenous and exogenous mesenchymal stem cells could be recruited to the injured lung, although the exact effects of these cells are debatable. To determine the effect of Wnt/β-catenin signaling in the epithelial differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs), we established a coculture system that contains BM-MSCs and alveolar type II epithelial cells. The in vitro experiments demonstrated that XAV939 could promote the differentiation of BM-MSCs into an epithelium-like phenotype in the coculture system. We also found that XAV939 could inhibit the proliferation and myofibroblast differentiation of NIH/3T3 fibroblasts. This work supports that inhibition of the Wnt/β-catenin signaling pathway may be exploited for the treatment of idiopathic pulmonary fibrosis for which effective treatment strategies are still lacking.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3