Epigenetics as a mediator of genetic risk in osteoarthritis: role during development, homeostasis, aging, and disease progression

Author:

Richard Daniel1,Capellini Terence D.12,Diekman Brian O.34ORCID

Affiliation:

1. Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States

2. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States

3. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, United States

4. Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States

Abstract

The identification of genomic loci that are associated with osteoarthritis (OA) has provided a starting point for understanding how genetic variation activates catabolic processes in the joint. However, genetic variants can only alter gene expression and cellular function when the epigenetic environment is permissive to these effects. In this review, we provide examples of how epigenetic shifts at distinct life stages can alter the risk for OA, which we posit is critical for the proper interpretation of genome-wide association studies (GWAS). During development, intensive work on the growth and differentiation factor 5 ( GDF5) locus has revealed the importance of tissue-specific enhancer activity in controlling both joint development and the subsequent risk for OA. During homeostasis in adults, underlying genetic risk factors may help establish beneficial or catabolic “set points” that dictate tissue function, with a strong cumulative effect on OA risk. During aging, methylation changes and the reorganization of chromatin can “unmask” the effects of genetic variants. The destructive function of variants that alter aging would only mediate effects after reproductive competence and thus avoid any evolutionary selection pressure, as consistent with larger frameworks of biological aging and its relationship to disease. A similar “unmasking” may occur during OA progression, which is supported by the finding of distinct expression quantitative trait loci (eQTLs) in chondrocytes depending on the degree of tissue degradation. Finally, we propose that massively parallel reporter assays (MPRAs) will be a valuable tool to test the function of putative OA GWAS variants in chondrocytes from different life stages.

Funder

HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3