Rab5a-mediated localization of claudin-1 is regulated by proteasomes in endothelial cells

Author:

Asaka Machiko1,Hirase Tetsuaki12,Hashimoto-Komatsu Aiko1,Node Koichi1

Affiliation:

1. Department of Cardiovascular and Renal Medicine, Saga University Faculty of Medicine, Saga, Japan; and

2. Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan

Abstract

Tight junctions composed of transmembrane proteins, including claudin, occludin, and tricellulin, and peripheral membrane proteins are a major barrier to endothelial permeability, whereas the role of claudin in the regulation of tight junction permeability in nonneural endothelial cells is unclear. This study demonstrates that claudin-1 is dominantly expressed and depletion of claudin-1 using small interfering RNA (siRNA) increased tight junction permeability in EA hy.926 cells, indicating that claudin-1 is a crucial regulator of endothelial tight junction permeability. The ubiquitin-proteasome system has been implicated in the regulation of endocytotic trafficking of plasma membrane proteins. Therefore, the involvement of proteasomes in the localization of claudin-1 was investigated by pharmacological and genetic inhibition of proteasomes using a proteasome inhibitor, N-acetyl-Leu-Leu-Nle-CHO, and siRNA against the β5-subunit of the 20S proteasome, respectively. Claudin-1 was localized at cell-cell contact sites in control cells. Claudin-1 was localized in the cytoplasm in association with Rab5a and EEA-1, a marker of early endosome, following inhibition of proteasomes. Depletion of Rab5a using siRNA reversed the localization of claudin-1 induced by inhibition of proteasomes. These data suggest that proteasomes regulate claudin-1 localization at the plasma membrane, which changes upon proteasomal inhibition to a Rab5a-mediated endosomal localization.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3