Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration

Author:

Koh Timothy J.,Bryer Scott C.,Pucci Augustina M.,Sisson Thomas H.

Abstract

Skeletal muscle possesses a remarkable capacity for regeneration. Although the regulation of this process at the molecular level remains largely undefined, the plasminogen system appears to play a critical role. Specifically, mice deficient in either urokinase-type plasminogen activator (uPA−/−mice) or plasminogen demonstrate markedly impaired muscle regeneration after injury. In the present study, we tested the hypothesis that loss of the primary inhibitor of uPA, plasminogen activator inhibitor-1 (PAI-1), would improve muscle regeneration. Repair of the extensor digitorum longus muscle was assessed after cardiotoxin injury in wild-type, uPA−/−, and PAI-1-deficient (PAI-1−/−) mice. As expected, there was no uPA activity in the injured muscles of uPA−/−mice, and muscles from these transgenic animals demonstrated impaired regeneration. On the other hand, uPA activity was increased in injured muscle from PAI-1−/−mice to a greater extent than in wild-type controls. Furthermore, PAI-1−/−mice demonstrated increased expression of MyoD and developmental myosin after injury as well as accelerated recovery of muscle morphology, protein levels, and muscle force compared with wild-type animals. The injured muscles of PAI-1-null mice also demonstrated increased macrophage accumulation, contrasting with impaired macrophage accumulation in uPA-deficient mice. The extent of macrophage accumulation correlated with both the clearance of protein after injury and the efficiency of regeneration. Taken together, these results indicate that PAI-1 deficiency promotes muscle regeneration, and this protease inhibitor represents a therapeutic target for enhancing muscle regeneration.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3