Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin

Author:

Fruen Bradley R.1,Bardy Jennifer M.1,Byrem Todd M.2,Strasburg Gale M.2,Louis Charles F.1

Affiliation:

1. Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; and

2. Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824

Abstract

Calmodulin (CaM) activates the skeletal muscle ryanodine receptor Ca2+ release channel (RyR1) in the presence of nanomolar Ca2+ concentrations. However, the role of CaM activation in the mechanisms that control Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle and in the heart remains unclear. In media that contained 100 nM Ca2+, the rate of45Ca2+ release from porcine skeletal muscle SR vesicles was increased approximately threefold in the presence of CaM (1 μM). In contrast, cardiac SR vesicle45Ca2+ release was unaffected by CaM, suggesting that CaM activated the skeletal RyR1 but not the cardiac RyR2 channel isoform. The activation of RyR1 by CaM was associated with an approximately sixfold increase in the Ca2+ sensitivity of [3H]ryanodine binding to skeletal muscle SR, whereas the Ca2+ sensitivity of cardiac SR [3H]ryanodine binding was similar in the absence and presence of CaM. Cross-linking experiments identified both RyR1 and RyR2 as predominant CaM binding proteins in skeletal and cardiac SR, respectively, and [35S]CaM binding determinations further indicated comparable CaM binding to the two isoforms in the presence of micromolar Ca2+. In nanomolar Ca2+, however, the affinity and stoichiometry of RyR2 [35S]CaM binding was reduced compared with that of RyR1. Together, our results indicate that CaM activates RyR1 by increasing the Ca2+ sensitivity of the channel, and further suggest differences in CaM's functional interactions with the RyR1 and RyR2 isoforms that may potentially contribute to differences in the Ca2+ dependence of channel activation in skeletal and cardiac muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3