MHC isoform composition and Ca2+- or Sr2+-activation properties of rat skeletal muscle fibers

Author:

Bortolotto Susan K.1,Cellini Maria2,Stephenson D. George2,Stephenson Gabriela M. M.1

Affiliation:

1. School of Life Sciences and Technology, Victoria University of Technology, Melbourne, Victoria 8001; and

2. Department of Zoology, La Trobe University, Bundoora, Victoria 3083, Australia

Abstract

Chemically skinned single fibers from adult rat skeletal muscles were used to test the hypothesis that, in mammalian muscle fibers, myosin heavy chain (MHC) isoform expression and Ca2+- or Sr2+-activation characteristics are only partly correlated. The fibers were first activated in Ca2+- or Sr2+-buffered solutions under near-physiological conditions, and then their MHC isoform composition was determined electrophoretically. Fibers expressing only the MHC I isoform could be appropriately identified on the basis of either the Ca2+- or Sr2+-activation characteristics or the MHC isoform composition. Fibers expressing one or a combination of fast MHC isoforms displayed no significant differences in their Ca2+- or Sr2+-activation properties; therefore, their MHC isoform composition could not be predicted from their Ca2+- or Sr2+-activation characteristics. A large proportion of fibers expressing both fast- and slow-twitch MHC isoforms displayed Ca2+- or Sr2+-activation properties that were not consistent with their MHC isoform composition; thus both fiber-typing methods were needed to fully characterize such fibers. These data show that, in rat skeletal muscles, the extent of correlation between MHC isoform expression and Ca2+- or Sr2+-activation characteristics is fiber-type dependent.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3