Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum

Author:

Bayguinov Orline,Ward Sean M.,Kenyon James L.,Sanders Kenton M.

Abstract

Electrical slow waves determine the timing and force of peristaltic contractions in the stomach. Slow waves originate from a dominant pacemaker in the orad corpus and propagate actively around and down the stomach to the pylorus. The mechanism of slow-wave propagation is controversial. We tested whether Ca2+ entry via a voltage-dependent, dihydropyridine-resistant Ca2+ conductance is necessary for active propagation in canine gastric antral muscles. Muscle strips cut parallel to the circular muscle were studied with intracellular electrophysiological techniques using a partitioned-chamber apparatus. Slow-wave upstroke velocity and plateau amplitude decreased from the greater to the lesser curvature, and this corresponded to a decrease in the density of interstitial cells of Cajal in the lesser curvature. Slow-wave propagation velocity between electrodes impaling cells in two regions of muscle and slow-wave upstroke and plateau were measured in response to experimental conditions that reduce the driving force for Ca2+ entry or block voltage-dependent Ca2+ currents. Nicardipine (0.1–1 μM) did not affect slow-wave upstroke or propagation velocities. Upstroke velocity, amplitude, and propagation velocity were reduced in a concentration-dependent manner by Ni2+ (1–100 μM), mibefradil (10–30 μM), and reduced extracellular Ca2+ (0.5–1.5 mM). Depolarization (by 10–15 mM K+) or hyperpolarization (10 μM pinacidil) also reduced upstroke and propagation velocities. The higher concentrations (or lowest Ca2+) of these drugs and ionic conditions tested blocked slow-wave propagation. Treatment with cyclopiazonic acid to empty Ca2+ stores did not affect propagation. These experiments show that voltage-dependent Ca2+ entry is obligatory for the upstroke phase of slow waves and active propagation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3