Insights into Zn2+homeostasis in neurons from experimental and modeling studies

Author:

Colvin Robert A.,Bush Ashley I.,Volitakis Irene,Fontaine Charles P.,Thomas Dustin,Kikuchi Kazuya,Holmes William R.

Abstract

To understand the mechanisms of neuronal Zn2+homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein,65Zn2+uptake and release, and intracellular free Zn2+levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+transients and total Zn2+content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This “muffler model” estimated the resting intracellular free Zn2+concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 μM, was shown to selectively increase Zn2+influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+homeostasis, when challenged with Zn2+loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3