Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits

Author:

Osborne J. A.1,Siegman M. J.1,Sedar A. W.1,Mooers S. U.1,Lefer A. M.1

Affiliation:

1. Department of Physiology, Jefferson Medical College, Thomas JeffersonUniversity, Philadelphia, Pennsylvania 19107.

Abstract

The endothelium-dependent contractile responses of subepicardial coronary resistance arteries (286 +/- 18 microns ID, n = 22) from rabbits fed either a 0.5 or 2.0% cholesterol-enriched diet or a control diet for 10-12 wk were determined under isometric conditions at the optimum length for active force production (Lo). After the development of tone with 29 mM K+-Krebs, arteries from control rabbits treated with acetylcholine (0.1-10 microM) showed a concentration-dependent relaxation, with a maximum decrease in tone of 63%. In contrast, coronary arteries from animals fed 0.5 and 2.0% cholesterol contracted to acetylcholine (approximately 210% increase in tone). A similar phenomenon was seen with arteries precontracted with 10 nM 9,11-methanoepoxy-prostaglandin H2 (U 46,619), a thromboxane A2 mimetic. The contractile responses to acetylcholine occurred in arteries in which the endothelium was structurally intact and which were devoid of plaque. Arteries from cholesterol-fed animals were poorly responsive to ADP (0.01-10.0 microM), whereas arteries from normal animals relaxed. All arteries relaxed to an equal degree when exposed to acidified nitrite, which produces nitric oxide (NO). The data suggest that as a result of hypercholesterolemia, there may be a dysfunction in the synthesis or release of endothelium-derived relaxing factor (EDRF) by the endothelial cells of coronary resistance arteries, rather than an abnormality of the smooth muscle cells per se.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3