The circadian clock and extracellular matrix homeostasis in aging and age-related diseases

Author:

Dudek Michal1,Swift Joe1,Meng Qing-Jun1ORCID

Affiliation:

1. Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

Abstract

The extracellular matrix (ECM) is the noncellular scaffolding component present within all tissues and organs. It provides crucial biochemical and biomechanical cues to instruct cellular behavior and has been shown to be under circadian clock regulation, a highly conserved cell-intrinsic timekeeping mechanism that has evolved with the 24-hour rhythmic environment. Aging is a major risk factor for many diseases, including cancer, fibrosis, and neurodegenerative disorders. Both aging and our modern 24/7 society disrupt circadian rhythms, which could contribute to altered ECM homeostasis. Understanding the daily dynamics of ECM and how this mechanism changes with age will have a profound impact on tissue health, disease prevention, and improving treatments. Maintaining rhythmic oscillations has been proposed as a hallmark of health. On the other hand, many hallmarks of aging turn out to be key regulators of circadian timekeeping mechanisms. In this review, we summarize new work linking the ECM with circadian clocks and tissue aging. We discuss how the changes in the biomechanical and biochemical properties of ECM during aging may contribute to circadian clock dysregulation. We also consider how the dampening of clocks with age could compromise the daily dynamic regulation of ECM homeostasis in matrix-rich tissues. This review aims to encourage new concepts and testable hypotheses about the two-way interactions between circadian clocks and ECM in the context of aging.

Funder

UKRI | Biotechnology and Biological Sciences Research Council

UKRI | Medical Research Council

Versus Arthritis

Wellcome Trust

Horizon 2020 Framework Programme

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3