Aquaporin-3 in the epidermis: more than skin deep

Author:

Bollag Wendy B.1234,Aitkens Lorry2,White Joseph5,Hyndman Kelly A.6ORCID

Affiliation:

1. Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia

2. Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia

3. Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, Georgia

4. Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia

5. Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia

6. Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

The skin is essential for terrestrial life. It is responsible for regulating water permeability and functions as a mechanical barrier that protects against environmental insults such as microbial infection, ultraviolet light, injury, and heat and cold, which could damage the cells of the body and compromise survival of the organism. This barrier is provided by the outer layer, the epidermis, which is composed predominantly of keratinocytes; keratinocytes undergo a program of differentiation to form the stratum corneum comprising the cornified squame “bricks” and lipid “mortar.” Dysregulation of this differentiation program can result in skin diseases, including psoriasis and nonmelanoma skin cancers, among others. Accumulating evidence in the literature indicates that the water-, glycerol-, and hydrogen peroxide-transporting channel aquaporin-3 (AQP3) plays a key role in various processes involved in keratinocyte function, and abnormalities in this channel have been observed in several human skin diseases. Here, we discuss the data linking AQP3 to keratinocyte proliferation, migration, differentiation, and survival as well as its role in skin properties and functions like hydration, water retention, wound healing, and barrier repair. We also discuss the mechanisms regulating AQP3 levels, localization, and function and the anomalies in AQP3 that are associated with various skin diseases.

Funder

Veterans Administration

HHS | National Institutes of Health

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3