Timing of response onset and offset in macaque V4: stimulus and task dependence

Author:

Zamarashkina Polina1,Popovkina Dina V.2,Pasupathy Anitha3

Affiliation:

1. Biological Structure, University of Washington, United States

2. University of Washington, United States

3. Biological Structure, University of Washington

Abstract

In the primate visual cortex, both the magnitude of the neuronal response and its timing can carry important information about the visual world, but studies typically focus only on response magnitude. Here, we examine the onset and offset latency of the responses of neurons in area V4 of awake, behaving macaques across several experiments, in the context of a variety of stimuli and task paradigms. Our results highlight distinct contributions of stimuli and tasks to V4 response latency. We found that response onset latencies are shorter than typically cited (median = 75.5 ms), supporting a role for V4 neurons in rapid object and scene recognition functions. Moreover, onset latencies are longer for smaller stimuli and stimulus outlines, consistent with the hypothesis that longer latencies are associated with higher spatial frequency content. Strikingly, we found that onset latencies showed no significant dependence on stimulus occlusion, unlike in inferotemporal cortex, nor on task demands. Across the V4 population, onset latencies had a broad distribution, reflecting the diversity of feedforward, recurrent and feedback connections that inform the responses of individual neurons. Response offset latencies, on the other hand, displayed the opposite tendency in their relationship to stimulus and task attributes: they are less influenced by stimulus appearance, but are shorter in guided saccade tasks compared to fixation tasks. The observation that response latency is influenced by stimulus- and task-associated factors emphasizes a need to examine response timing alongside firing rate in determining the functional role of area V4.

Funder

NEI

NIH / ORIP

NSF GRFP

NIH

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3