Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity

Author:

Schlegel Nicolas12,Meir Michael1,Heupel Wolfgang-Moritz1,Holthöfer Bastian3,Leube Rudolf E.3,Waschke Jens1

Affiliation:

1. Institute of Anatomy and Cell Biology and

2. Department of Surgery I, University of Würzburg, Würzburg;

3. Institute of Molecular and Cellular Anatomy, RWTH University of Aachen, Aachen, Germany

Abstract

The integrity of intercellular junctions that form the “terminal bar” in intestinal epithelium is crucial for sealing the intestinal barrier. Whereas specific roles of tight and adherens junctions are well known, the contribution of desmosomal adhesion for maintaining the intestinal epithelial barrier has not been specifically addressed. For the present study, we generated a desmoglein 2 antibody directed against the extracellular domain (Dsg2 ED) to test whether impaired Dsg2-mediated adhesion affects intestinal epithelial barrier functions in vitro. This antibody was able to specifically block Dsg2 interaction in cell-free atomic-force microscopy experiments. For in vitro studies of the intestinal barrier we used Caco2 cells following differentiation into tight enterocyte-like epithelial monolayers. Application of Dsg2 ED to Caco2 monolayers resulted in increased cell dissociation compared with controls in a dispase-based enterocyte dissociation assay. Under similar conditions, Dsg2 antibody significantly decreased transepithelial electrical resistance and increased FITC-dextran flux, indicating that Dsg2 interaction is critically involved in the maintenance of epithelial intestinal barrier functions. As revealed by immunostaining, this was due to Dsg2 ED antibody-induced rupture of tight junctions because tight junction proteins claudins 1, 4, and 5, occludin, and tight junction-associated protein zonula occludens-1 were partially removed from cell borders by Dsg2 ED treatment. Similar results were obtained by application of a commercial monoclonal antibody directed against the ED of Dsg2. Antibody-induced effects were blocked by absorption experiments using Dsg2-Fc-coated beads. Our data indicate that Dsg2-mediated adhesion affects tight junction integrity and is required to maintain intestinal epithelial barrier properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3