Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability

Author:

Beyak Michael J.,Ramji Noor,Krol Karmen M.,Kawaja Michael D.,Vanner Stephen J.

Abstract

The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Na v)] have been described in small DRG neurons; one with slow inactivation kinetics (Na v1.8) and the other with persistent kinetics (Na v1.9), and their modulation has been implicated in inflammatory pain. This has not been studied in neurons projecting to the colon. This study examined the relative importance of these currents in inflammation-induced changes in a mouse model of inflammatory bowel disease. Colonic sensory neurons were retrogradely labeled, and colitis was induced by instillation of trinitrobenzenesulfonic acid (TNBS) into the lumen of the distal colon. Seven to ten days later, immunohistochemical properties were characterized in controls, and whole cell recordings were obtained from small (<40 pF) labeled DRG neurons from control and TNBS animals. Most neurons exhibited both fast TTX-sensitive (TTX-S)- and slow TTX-R-inactivating Na+ currents, but persistent TTX-R currents were uncommon (<15%). Most labeled neurons were CGRP (79%), tyrosine kinase A (trkA) (84%) immunoreactive, but only a small minority bind IB4 (14%). TNBS-colitis caused ulceration, thickening of the colon and significantly increased neuronal excitability. The slow TTX-R-inactivating Na current density (Na v1.8) was significantly increased, but other Na currents were unaffected. Most small mouse colonic sensory neurons are CGRP, trkA immunoreactive, but not isolectin B4 reactive and exhibit fast TTX-S, slow TTX-R, but not persistent TTX-R Na+ currents. Colitis-induced hyperexcitability is associated with increased slow TTX-R (Na v1.8) Na+ current. Together, these findings suggest that colitis alters trkA-positive neurons to preferentially increase slow TTX-R Na+ (Na v1.8) currents.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3