Activation of CFTR by ASBT-mediated bile salt absorption

Author:

Bijvelds Marcel J. C.,Jorna Huub,Verkade Henkjan J.,Bot Alice G. M.,Hofmann Franz,Agellon Luis B.,Sinaasappel Maarten,de Jonge Hugo R.

Abstract

In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Clsecretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+flux. TC-evoked Clsecretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Clsecretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Clexit. TC-induced Clsecretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3