Fungi, host immune response, and tumorigenesis

Author:

Elaskandrany Miar12,Patel Rohin1,Patel Mintoo3,Miller George4,Saxena Deepak56,Saxena Anjana17ORCID

Affiliation:

1. Biology Department, Brooklyn College, City University of New York, New York, New York

2. Macaulay Honors Academy, Brooklyn College, City University of New York, New York, New York

3. Natural Sciences, South Florida State College, Avon Park, Florida

4. New York City Health & Hospitals (Woodhull), New York, New York

5. Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York

6. Department of Surgery, New York University School of Medicine, New York, New York

7. Biology and Biochemistry Programs, Graduate Center, City University of New York (CUNY), New York, New York

Abstract

Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host’s immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant (“cold”) tumor microenvironment to an immunocompetent (“hot”) milieu that is effective in eliminating tumorigenesis.

Funder

CUNY | Research Foundation of The City University of New York

DOD | United States Army | MEDCOM | CDMRP | DOD Peer Reviewed Cancer Research Program

HHS | NIH | National Cancer Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3