Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to ”luminal fasting“

Author:

Le Bacquer Olivier1,Laboisse Christian1,Darmaun Dominique1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale U.539, Centre de Recherche en Nutrition Humaine, 44093 Nantes, France

Abstract

This study used polarized cell line Caco-2 as a model of human enterocytes to determine: 1) whether deprivation of nutrients on the apical (luminal) side of the epithelium (fasting) alters protein synthesis in enterocytes; 2) if so, whether glutamine can attenuate the effects of fasting; and 3) whether the effects of glutamine depend on its route (i.e., apical vs. basolateral) of supply. Caco-2 cells were submitted to nutrient deprivation on the apical side to mimic the effects of fasting, whereas the basolateral side of the epithelium remained exposed to regular medium. Cells were then incubated with [2H3]leucine with or without glutamine, and the fractional synthesis rate (FSR) of total cell protein was determined from [2H3]leucine enrichments in protein-bound and intracellular free leucine measured by gas chromatography/mass spectrometry. A 24-h apical nutrient deprivation (luminal fasting) was associated with a decline in intracellular glutamine, glutamate, and glutathione concentrations (–38, –40, and –40%, respectively), protein FSR (–20%), and a rise in passage of dextran, an index of transepithelial permeability. In fasted cells, basolateral or luminal glutamine supplementation did not alter the glutathione pool, but it restored protein FSR and improved permeability. The effects of glutamine were abolished by 6-diazo-oxo-l-norleucine, an inhibitor of glutaminase, and was mimicked by glutamate. We conclude that in Caco-2 cells, protein synthesis depends on nutrient supply on the apical side, and glutamine regardless of the route of supply corrects some of the deleterious effects of fasting in a model of human enterocytes through its deamidation into glutamate.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3